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The paper presents simulations regarding the elastic properties of glass, carbon and Kevlar49 fibre-reinforced composite 
laminates based on epoxy resin and subjected to off-axis loading system using an approach developed by Clyne and 
Withers within Cambridge University, UK [13]. Following composite laminates with HM-carbon, HS-carbon and Kevlar49 
fibres with plies sequence [0/90/0/90], [0/45/-45/90] and [45/-45/45/-45] as well as E-glass fibres-reinforced laminates with 
plies sequence [16/-81.8], [30/-30/90], [55/-55] have been used in simulations. The glass fibres laminates with the above 
plies sequence are commonly used to withstand the inner pressure of composite tubes and tanks. The elastic constants as 
well as the tensile-shear interaction have been determined. In order to obtain equal stiffness in all off-axis loading systems, 
a composite laminate has to present balanced angle plies. A comparison between the elastic properties of these laminates 
and the quasiisotropic ones is presented. Tensile-shear interaction in a fibre-reinforced composite laminate occurs only if 
the off-axis loading system does not coincide with the main axes of a single lamina or if the laminate is not balanced. 
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1. Introduction 
 

It is well known that composite laminates with aligned 

reinforcement are very strong along the fibres but also 

very weak transverse to the fibres direction. This fact is 

more obvious in the case of advanced composite laminates 

reinforced with anisotropic carbon or aramid fibres such as 

HM-carbon, HS-carbon and Kevlar49 but this is fair 

accurate for glass fibre-reinforced laminates too [1-3]. 

Getting equal stiffness of laminates is a demand, so in 

general, the solution to obtain equal stiffness of laminates 

subjected in all directions within a plane is to stack and 

bond together plies with different fibres orientations [4-6]. 

Simulating elastic properties of fibre-reinforced composite 

laminates is for a great importance in designing composite 

structures especially suited for aerospace, defence and 

automotive industries, but also for transportation, 

chemistry and food industries [7-10]. Carbon fibres of type 

HM (high modulus) present a value of Young’s modulus 

greater than 300 GPa. High strength (HS) carbon fibres are 

for general purposes, cost effective designed for industrial 

and recreational applications and are usually used for non-

structural components of aircrafts. Kevlar 49 aramid fibre 

is characterized by low-density and high-tensile strength 

and modulus. These properties are the key to its successful 

use as reinforcement for plastic composite structures in 

aircraft, aerospace, marine, automotive, other industrial 

applications, and in sports equipment. It is available in 

continuous-filament yarns, chopped fibres, woven and 

unidirectional fabrics, tissues or veils and tapes for 

reinforcement applications. Kevlar 49 aramid is used in 

high-performance composite applications where 

lightweight, high strength and stiffness, vibration damping 

and resistance to damage and fatigue are for a great 

importance. Reinforced composite structures can save up 

to 40% of the weight of glass-fibre composites at 

equivalent stiffness [11-12].  

 

2. A theoretical approach 
 

A composite laminate (Fig. 1) formed by a number of 

unidirectional reinforced laminae subjected regarding to 

the loading scheme presented in Fig. 2 is considered. The 

elasticity law for a unidirectional lamina K can be 

expressed as following: 
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where rijK  represent the transformed stiffness, σxxK , σyyK 

are the mean stresses of K lamina on x- respective y-axis 

and τxyK represent the mean shear stress of K lamina 

against the x-y coordinate system. The balance equations 

for the composite laminate are: 
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where nxx , nyy are the normal forces on the unit length of 

the laminate on x- respective y-axis and nxy represents the 

shear force, in plane, on the unit length of the laminate 

against the x-y coordinate system. σxx , σyy are the normal 

stresses on x- respective y-axis of the laminate, τxy 

represent the shear stress of the laminate against the x-y 

coordinate system. tK , t represent the thickness of the K 

lamina respective the laminate thickness, nxxK , nyyK  are 

forces on the unit length of K lamina on x- respective y-

axis directions and nxyK is the shear force in plane, on the 

unit length of K lamina against the x-y coordinate system. 

Beside the balance equations, the geometric conditions to 

compute the stresses must be determined too. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Constructive scheme of a composite laminate. 

For composite laminates, these geometric conditions 

imply that all laminae are bonded together and withstand, 

in a specific point, the same strains εxx, εyy, γxy as well as 

for the entire laminate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Loading scheme of a composite laminate. 

 

 

The geometric conditions are: 
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for all K laminae. 

According to equations (1)-(5), the elasticity law for 

entire laminate can be computed: 
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where the laminate stiffness rij are: 
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So, the laminate elasticity law becomes: 
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Computing the laminate strains as a function of stresses, 

the expressions (8) are: 
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where cij represents the laminate compliance tensor.  

It is obvious that the laminate will exhibit different 

elastic constants if the loading system is applied at a 

random angle, Φ, to the x-y coordinate system. The 

compounds of the transformed compliance tensor can be 

determined in the following way [13]: 
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This tensor can be computed as a function of elastic 

constants. Thus [14]: 
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3. Results 
 

All simulations of the elastic properties of fibre-

reinforced composite laminates have been carried out 

using an approach developed by Clyne and Withers from 

the Department of Materials Science within the Cambridge 

University, UK [14]. In simulations, following HM-

carbon, HS-carbon and Kevlar49 fibres-reinforced 

laminates have been used: [0/90/0/90], [0/45/-45/90] and 

[45/-45/45/-45]. For E-glass fibres-reinforced laminates, 

following plies sequence have been used: [16/-81.8], [30/-

30/90] and [55/-55]. General input data are: fibres volume 

fraction υ = 0.5 in all cases, plies thickness t = 0.125 mm 

and off-axis loading systems varies between 0 and 90 

degrees. For HM carbon fibres, following input data have 

been used:  

 EM = 3.9 GPa,  

 E║ > 300 GPa,  

 E┴ < 100 GPa,  

 υM < 0.5,  

 υF < 0.4,  

 GM < 25 GPa,  

 GF < 50 GPa.  

 

For HS carbon fibres the input data are:  

 E║ < 300 GPa,  

 E┴ < 80 GPa.  

 

For Kevlar49 fibres:  

 E║ < 200 GPa,  

 E┴ < 50 GPa.  

 

For the E-glass fibre-reinforced laminates, following data 

have been used:  

 EM = 3.9 GPa;  

 EF = 73 GPa;  

 υM = 0.38;  

 υF = 0.25;  

 GM < 10 GPa;  

 GF < 25 GPa. 

 

The distributions of the elastic constants Ex, Gxy and 

υxy for carbon and aramid fibres laminates are presented in 

Figs. 1-9. The elastic constants Exx, Eyy, Gxy and υxy as 
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well as the c33 distributions for the glass fibres laminates 

are viewed in Figs. 10 – 14. 

 

 
Fig. 1. Ex Young modulus for a [0/90/0/90] epoxy based 

composite laminate. 

 

 
Fig. 2. Gxy shear modulus for a [0/90/0/90] epoxy  

based composite laminate. 

 

 

 
Fig. 3. υxy Poisson ratio for a [0/90/0/90] epoxy based 

 composite laminate. 

 

 
 

Fig. 4. Ex Young modulus for a [0/45/-45/90] epoxy  

based composite laminate. 

 

 
 

Fig. 5. Gxy shear modulus for a [0/45/-45/90] epoxy  

based composite laminate. 

 

 
 

Fig. 6. υxy Poisson ratio for a [0/45/-45/90] epoxy  

based composite laminate. 
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Fig. 7. Ex Young modulus for a [45/-45/45/-45] epoxy  

based composite laminate. 

 

 
 

Fig. 8. Gxy shear modulus for a [45/-45/45/-45] epoxy  

based composite laminate. 

 

 
 

Fig. 9. υxy Poisson ratio for a [45/-45/45/-45] epoxy 

 based composite laminate. 

 
 

Fig. 10. Ex Young modulus of three epoxy based  

glass-fibres composite laminates. 

 

 
 

Fig. 11. Ey Young’s modulus of three epoxy based  

glass-fibres composite laminates. 

 

 
Fig. 12. Shear modulus distribution of three epoxy based  

glass-fibres composite laminates. 
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Fig. 13. Poisson ratio distribution of three epoxy based  

glass-fibres composite laminates. 

 

 
 

Fig. 14. Distribution of c33 compound of the transformed 

compliance tensor. 

 

4. Discussion 
 

Figs. 10 – 13 show an equal stiffness distribution for 

the laminate with the plies sequence [30/-30/90], which 

means that this laminate provides balanced angle plies. 

This kind of structure is more suitable for tubes 

manufacturing subjected to internal pressure than the 

laminates [16/-81.9] and [55/-55]. Under off-axis loading, 

normal stresses produce shear strains and of course, 

normal strains and shear stresses produce normal strains as 

well as shear strains.  

 

5. Conclusions 
 

Tensile-shear interactions lead to distortions and local 

micro-structural damage and failure, so in order to obtain 

equal stiffness in all off-axis loading systems, a composite 

laminate have to present balanced angle plies, e.g. [0/45/-

45/90]. This tensile-shear interaction is also present in 

composite laminates (see for instance Fig. 15), but does 

not occur if the loading system is applied along the main 

axes of a single lamina or if a laminate is balanced. 

 

 
 

Fig. 15. Distribution of tensile-shear interaction in a  

[0/90/0/90] composite laminate. 
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